Printed Pag	es:03
Paper Id:	270246

	Sub (Code:	KMB	206	
Roll No.					

MBA

(SEM-II) THEORY EXAMINATION 2018-19 QUANTITATIVE TECHNIQUES FOR MANAGEMENT

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

			DL.	CHOIT				39
1.	Attempt all question	ons in bri	ef.				2 x 10	= 20
							Marks	CO
a.	What are the tools of	f operation	on resea	rch?			2	1
b.	Give some uses of o						2	1
c.	What are the applica	ations of	Linear l	Program	ming in	Management?	2	2
d.	What do you mean problem?	by Initial	Basic I	Feasible	solution	ns of a transportation	on 2	2
e.	Distinguish between	n Assignm	nent and	d Transp	ortation	n problem.	2	3
f.	What do you mean	by saddle	point?				2	3
g.	Define a sequencing	g problem	ι.				2	4
h.	What do you mean	by arrival	rate an	d service	e rate in	Queuing theory?	2	4
i.	What is the importa-	nce of rep	olaceme	ent?			2	5
j.	Explain time estima	tes in PE	RT.				2	5 :
			SE	CTION I	3			
2.	Attempt any three	of the fo	llowing					
			5				Marks	CO
0	Discuss the signific	20000 000	1 gaana	of One	ration 1	Pagagrah in bugina		2
a.	and industry.	cance and	scope	or Ope	lation	Research in busine	38 10	2
b.	A company produc	es two t	vpes of	f presen	tation	goods A and B th	at 10	1
	require gold and sile and 1 gram of gold grams of golds. The	lver. Each d while to e compan	h unit of hat of y can p	of type A B requir rocure 9	A requires 1 gr	res 3 grams of silver and f silver and 8 gms	er 2 of	
	gold. If each unit of							
	Rs. 50. Determine produced to maxim							
	paper.	~ 1		1		10 1 1	C 10	2
c.	For the following g the game using prin	ciple of d	ominan	_	ies of A	A and B and value	01 10	3
		Pla	yer B					
			Bı	B ₂	B ₃	B ₄		
		A_1	7	6	8	9		
	Player A	A_2	-4	-3	9	10		
		A ₃	3	0	4	2		
		A ₄	10	5	-2	0		
d.	At a service centre	custome	rs arrive	e at the	rate of	10 per hour and a	re 10	4

Why does the problem of replacement arises? What is individual & 10

served at the rate of 15 per hour. Their arrival follows poisson distribution and service is exponentially distributed. Find the average

length and average waiting time in the system.

group replacement?

Marks

SECTION C

3. Attempt any one part of the following:

		Marks	CO
a.	Discuss the historical background of Operations Research.	10	1
b.	Discuss briefly the limitations of operation research techniques.	10	1

4. Attempt any one part of the following:

			TVICTIED	
a.	$Max Z = 30x_1 + 40x_2 + 20x_3$		10	2
	s.t. $10x_1 + 12x_2 + 7x_3 \le 10,000$			
	$7x_1 + 10x_2 + 8x_3 \le 8000$			
	$x_1 + x_2 + x_3 \le 1000$			
	Where, $x_1, x_2, x_3 \ge 0$			
h	A Cement factory manager is consider	ring the least way to transpo	rt 10	2

b. A Cement factory manager is considering the least way to transport 1 cement from his three manufacturing centres P, Q, R to depots A, B, C, D and E. The weekly production and demands alongwith transportation costs are given below.

To From	A	В	С	D	Е	Supply (Tons)
riom	A	ь		L'	E	(10118)
P	4	1	3	4.	4	60
Q	2	3	2	2	3	35
R	3	5	2	4	4	40
Demand						
(Tons)	22	45	20	18	30	135

What should be the distribution programme?

5. Attempt any one part of the following:

a. The XYZ Co. has 5 jobs to be done and 5 men to do these jobs. The no. 10 3 of hours each man would like to accomplish each job is given below:

		Men			
	L	M	N	0	P
A	4	6	11	16	9
В	5	8	16	19	9
C	9	13	21	21	13
D	6	6	9	11	7
E	11	11	16	26	11
	B C D	B 5 C 9 D 6	L M A 4 6 B 5 8 C 9 13 D 6 6	L M N A 4 6 11 B 5 8 16 C 9 13 21 D 6 6 9	L M N O A 4 6 11 16 B 5 8 16 19 C 9 13 21 21 D 6 6 9 11

Find the optimal schedule of the above problem.

b. Explain the theory of dominance in the solution of rectangular game. 10 3

CO

4

Marks

10

6. Attempt any one part of the following:

a. Six jobs are performed first over machine I and then over machine II. The order of the completion of the jobs has no significance. Find the sequence of the jobs that minimizes the total elpased time & Also calculate the total clapsed time. The time of each job on each machine is given below.

Siven belo							
Job		1	2	3	4	5	6
Time in	Machine I	4	8	3	6	7	5
Hours	Machine II	6	3	7	2	8	4

b. Explain the important assumptions of a queuing model.

10 4

7. Attempt any one part of the following:

Marks CO

5

a. A transport com. buys road tankers costing Rs. 50,000 each. From the 10 data below advise management when a tanker should be replaced.

Year	1	2	3	4	5	6
Operating Cost (Rs.)	7500	8000	8500	9000	10000	12250
Resale Price (in Rs.)	45000	40,500	37,500	36000	34500	33250

b. Calculate average expected time, and draw network for a project with 10 5 the following activity times.

Activity	Op. time (in hrs.)	Time (in Hrs.)	Mixed Lotelly time (in hour)
2-4	1.0	5.0	3.0
2-6	1.0	7.0	4.0
48	4.0	16.0	7.0
6–8	1.0	5.0	1.5
8-10	1.5	14.5	3.5

Also calculate the variance and standard derivation of the project.